Selasa, 18 September 2018

SEJARAH PENEMUAN HINGGA PERKEMBANGAN TEKNOLOGI AKUSTIK SECARA GLOBAL HINNGGA PERKEMBANGANNYA DI INDONESIA


SEJARAH PENEMUAN HINGGA PERKEMBANGAN TEKNOLOGI AKUSTIK  SECARA GLOBAL HINNGGA PERKEMBANGANNYA DI INDONESIA

 Oleh : M. MISBACHUL MUNUR


A.  Sejarah Penemuan hingga Perkembangan Teknologi Akustik Secara Global
Akustik merupakan teori yang membahas tentang gelombang suara dan perambatannya dalam suatu medium. Sedangkann akustik kelautan adalah teori yang membahas tentang gelombang suara dan perambantannya dalam suatu medium air laut. Akustik kelautan merupakan satu bidang kelautan yang umendeteksi  target di kolom perairan dan dasar perairan dengan menggunakan suara sebagai mediannya. Studi kelautan dengan menggunakan akustik sangat m embantu peneliti untuk mengetahui objek yang berada di kolom dan dasar perairan. Objek ini dapat berupa plankton, ikan, jenis subtrat maupun kandungan minyak yang berada di bawah dasar perairan.
Sejarah perkembangan akustik kelautan dimulai sekitar tahun 1490 berasal dari catatan  harian Leonardo da vinci yang menuliskan : “Dengan menempatkan ujung pipa yang panjang didalam laut dan ujung lainnya di telinga anda, dapat mendengarkan kapal-kapal laut dari kejauhan”. Ini mengindikasikan bahwa suara dapat berpropagasi di dalam air. Ini yang disebutkan dengan Sonar pasif ( passive Sonar) karena kita hanya mendengar suara yang ada. Pada abad ke 19, Jacques and Pierre Currie menemukan piezoelectricity, sejenis kristal yang dapat membangkitkan arus listrik jika kristal tersebut ditekan, atau jika sebaliknya jika kristal tersebut dialiri arus listrik mak kristal akan mengalami tekanan yang akan menimbulkan perubahan  tekanan di permukaan kristal yang bersentuhan dengan air. Selanjutnya signal suara akan berpropagansi didalam air. Ini yang selanjutnya  disebut dengan Sonar Aktif( Active Sonar).
Perkembangan akustik yang sangat pesat pada saat Perang Dunia pertama terutama digunakan untuk pendeteksian kapal-kapal selam yang ada dibawah laut. Pendeteksian ini menggunakan  12 hydrophone (yang setara dengan microphone untuk penggunaan didarat) yang diletakan memanjang di bawah kapal laut untuk mendengarkan sinyal suara yang berasal dari kapal selam. Setelah Perang Dunia I, perkembangan akustik kelautan cenderung stgnan ini dikarenakan pada saat itu belum adanya perkembangan lebih lanjut dan penggunakan akustik kelautan lebih difokuskan untuk keperluan militer. Pada saat Perang Dunia di mulai penggunakaan akustik kembali berkembang dengan pesat. Penggunaan torpedo yang menggunakan sinyal akustik untuk mencari kapal musuh adalah penemuan yang hebat pada jaman itu.
Setelah selesainya Perang Dunia II, akustik tidak hanya digunakan untuk keperluan militer saja, tetapi akustik banyak digunakan untuk keperluan non-militer diantaranya mempelajari  proses perambatan suara didalam medium air; penelitian sifat-sifat akustik dari air dan benda-benda bawah air; pengamatan benda-benda dari echo yang mereka hasilkan; pendeteksian sumber-sumber suara bawah air; komunikasi dan penetapan posisi dengan alat akustik bawah air.
Pada dekade tahun tujuh puluhan barulah secara intensif diterapkan dalam pendeteksian dan pendugaan stok ikan, yakni dengan dikembangkannya analog echo-integrator dan echo counter. Perkembangan yang menyolok ini tidak hanya di Inggris tetapi juga di Norwegia, Amerika, Jepang, Jerman dan sebagainya.
Kemudian setelah diketemukan digital echo integrator dual beam acoustic system, split beam acoustic system, quasy ideal beam system dan aneka echo processor canggih lainnya, barulah ketelitian dan ketepatan pendugaan stock ikan dapat ditingkatkan sehingga akhir-akhir ini peralatan akustik menjadi peralatan standar dalam pendugaan stock ikan dan manajemen sumberdaya perikanan.
            Pemahaman fisik proses akustik maju cepat selama dan setelah Revolusi Ilmiah. Terutama Galileo Galilei (1564-1642), tetapi juga Marin Mersenne (1588-1648) mandiri, menemukan hukum lengkap bergetar string (menyelesaikan ilmu Pythagoras dan mulai 2000 tahun sebelumnya). Galileo menulis gelombang yang dihasilkan oleh getaran dari tubuh yang nyaring, dan menyebar melalui udara, yang di bawa ke tympanum dari telinga stimulus yang menafsirkan pikiran sebagai suara. Sebuah pernyataan yang luar biasa yang menunjuk awal fisiologis dan psikologis akustik. Pengukuran eksperimental dari kecepatan suara di udara telah dilakukan berhasil antara tahun 1630-1680 oleh sejumlah peneliti dan yang paling menonjol Mersenne. Sementara itu Newton (1642-1727) meneliti yang hubungan untuk kecepatan gelombang dalam zat padat landasan akustik fisik ( Principia, 1687).
Pada abad ke-18 melihat kemajuan besar dalam akustik para matematikawan menerapkan teknik baru kalkulus untuk menguraikan teori-teori propagasi gelombang suara. Pada abad ke-19 tokoh utama akustik matematika Helmholtz dari Jerman, mengkonsolidasi bidang akustik fisiologis, dan Rayleigh dari Inggris, yang menggabungkan pengetahuan sebelumnya dengan penelitianya sendiri ke lapangan dalam karya monumental-nya "Teori Sound ". Pada abad ke-19 juga, Wheatstone, Ohm, dan Henrymengembangkan analogi antara listrik dan akustik. Abad ke-20 melihat perkembangan aplikasi teknologi semakin tumbuh pesat. Aplikasi tersebut pertama kali di aplikasikan melalui pekerjaan Sabine's ground breaking dalam akustik arsitektur, diikuti Underwater akustik digunakan untuk mendeteksi kapal selam pada Perang Dunia pertama. Rekaman suara dan telepon memainkan peranan penting dalam transformasi global masyarakat.
Walaupun pengukuran kecepatan suara telah dilakukan sejak tahun 1927 oleh, ahli Fisika Swiss dan ahli Matematika Perancis, tetapi secara komersial Akustik Kelautan mulai dikembangkan oleh Inggris pada Perang Dunia II Pada permulaan Perang Dunia II tersebut, diketemukanlah ASDlC (Anti Submarine Detection Investigating Committee), suatu instrumen akustik yang digunakan untuk mendeteksi kapal selam (submarine) (Urick, 1983).  Untuk tujuan-tujuan damai, khususnya dalam eksplorasi dam eksploitasi sumberdaya hayati laut, baru dilakukan setelah Perang Dunia III. Secara garis besar sampai dekade (dasawarsa 80-an), kiranya dapat kita catat beberapa kemajuan penting yang telah dicapai oleh para ahli Akustik Kelautan seperti tertera berikut ini:
1.      Dekade 1945 - 1955
Pada periode ini, pengalaman pendeteksian ikan yang diperoleh sebelumya (khususnya oleh ahli Norwegia yang bernama Sund, 1935) mulai dimanfaatkan untuk membantu pemenuhan permintaan akan pangan dan protein. Kemudian pada tahun 1950, seorang ahli Norwegia juga (Devold) berhasil mendeteksi dan melokalisir gerombalan ikan Atlanto scandian herring yang sedang Mencari ikan. Selanjutnya pada musim dingin 1950- 1951, Devold berhasil juga mendeteksi gerombolan ikan herring dewasa yang akan melakukan pemijahan. Setelah alat pendeteksian akustik menjadi alat baku (standard), bukan saja untuk kapal-kapal peneliti perikanan tetapi juga untuk armada penangkapan, ikan (fishing fleets, terutama oleh negara-negara Scandinavia dan Uni Soviet.
2.      Dekade 1955 - 1965
Pada permulaan periode ini berkat pengembangan daerah penangkapan ikan misalnya dengan ditemukannya sistem-upwelling di dunia, maka produksi ikan sangat meningkat. Oleh Perserik.atan Bangsa bangsa PBB dimulailah dibuat proyek, pengembangan di Somalia, kemudian dengan cepat disusul oleh negara-negara penangkap ikan yang memiliki penangkapan ikan jarak jauh (long-distance fleets)seperti Jepang dan Uni Soviet. Ekspansi tersebut pads prinsipnya adalah berkat peningkatan penggunaan instrumen pendeteksian ikan baik horizontal (sonar) maupun vertical (echo sounder). Beberapa negara maju secara berlomba-lomba membuat instrumen kelautan tersebut, yakni Norwegia, Inggris Perancis, Amerika, Jerman, Jepang dan Uni Soviet. Kuantifikasi dari pendugaan stok ikan dilakukan dengan melihat echogram, sehingga hanya bisa menentukan saat-saat yang tepat untuk mengoperasikan alat penangkapan ikan.

3.      Dekade 1965 - 1975
Pada permulaah periode ini, produksi ikan dunia mulai merosot sehingga penangkapan ikan harus dilakukan dengan hati-hati dengan memperhitungkan kemelimpahan stoknya. Dengan demikian, maka mulailah dikembangkan metode akustik untuk stock assessment dalam rangka manajemen stok ikan yang bersangkutan. Dalam periode ini mulai dikembangkan pulse counter oleh Inggris untuk menghitung jumlah individu target (ikan). Selanjutnya oleh Norwegia diketemukan Analog Echo Integrator untuk menghitung total biomass dari suatu perairan, yang disursvai yang kemudian dikenal dengan namaSIMRAD QM-Echo Integrator. Ternyata kemudian analog echo integrator ini relatif mahal untuk diproduksi. secara komersial dan sangat sulit untuk dikalibrasi yakni untuk mengkonversi nilai integrasi echo menjadi estimasi biomass. Dengan adanya berbagai kesulitan tersebut, Amerika (University of Washington di Seattle) mulai meneliti dan mengembangkan digital echo integrator. Terobosan ini dimungkinkan karena diketemukan alat pemrosesan sinyal (echo signal processor) yang baru dan berkat bantuan teknologi komputerisasi, khususnya minicomputer. Selanjutnya untuk pengukuran in situ target strength, oleh ahli fisika & matematika Amerika (Ehrenberg) diketemukanlah dual-beam acoustic systemyang kemudian disusul dengan dikembangkannya towed-underwater vehicle yang selanjutnya menjadi keunggulan komparatif dari produksi Amerika.
4.      Dekade 1975 - 1985
Walaupun ide split-beam system pertama kali ditemukan di Amerika, tetapi untuk penerapan teknologinya dikembangkan oleh Norwegia yakni dengan diproduksinya SIMRAD split-beam acoustic system. Sistem ini yang merupakan keunggulan teknologi yang dimiliki Norwegia sebenarnya merupakan pengembangan dari SIMRAD QD-Echo Integrator (digital echo integrator) yang memiliki kelemahan dalam mendapatkan nilai in situ target strength. Jadi jelaslah bahwa kalau di Norwegia pengembanganscientific echo sounder dipusatkan pada split-beam acoustic system, maka di Amerika pengembangan difokuskan pada dual-beam acoustic system yang secara real time dapat menghitung nilai target strength (TS), volume backscattering strength (SV) dan kemudian biomass atau jumlah ikan. Jepang pun tidak tinggal diam dalam rangka inovasi teknologi canggih di bidang akustik kelautan ini yakni dengan diketemukannya frequency-diversity acoustic system dan quasi-ideal-beam acoustic system. Sistem yang pertama dikembangkan oleh Japan Radio Company (JRC), sedangkan sistem yang kedua dikembangkan oleh FURUNO dan akhir-akhir ini secara teknologi Memiliki kedudukan yang sejajar dengan dual-beam acoustic system America dam split-beam acoustic system' Norwegia.
            Pada saat sekarang ilmu akustik dimanfaatkan untuk aplikasi dalam survei kelautan, budidaya perairan, penelitian tingkah laku ikan, aplikasi dalam studi penampilan dan selektivitas alat  tangkap, bioakustik. Aplikasi dalam survei kelautan dengan akustik kita dapat menduga spesies ikan yang ada didaerah tertentu dengan menggunakan pantulan dari suara, semua spesies mempunyai target strenghyang berbeda-beda.
Secara garis besar, penggunaan dari Motode akustik ini adalah sebagai berikut :
a.       Pada survai sumberdaya hayati laut
1         untuk menduga spesies ikan,
2        untuk menduga ukuran dari ikan,
3          untuk menduga kemelimpahan (stok) ikan, plankton dan sebagainya.
b.      Pada budidaya perairan
1        untuk penentuan jumlah atau biomass ikan di dalam Penned fish,
2          untuk pengukuran ukuran dari individu penned fish,
3         untuk memantau kesehatan dan aktivitas ikan dengan telemetering tags.
c.       Pada studi tingkah laku ikan dan organisme laut lainnya :
1         pergerakan ikan (migrasi vertikal dan horizontal),
2         tingkah laku/orientasi (tilt angle),
3          reaksi penghindarandari kapal/alat penangkapan ikan (avoidance reactions),
4     respon terhadap stimuli.
d.      Pada penangkapan ikan
1       penampilan alat penangkapan ikan,
-2         selektivitas alat penangkapan ikan
     Lain-lain, misalnya mempeiajari perambatan suara di air laut, sifat-sifat akustik dari air laut dan target/obyek di air laut, pendeteksian sumber suara dan komunikasi di air laut.
5.  Perkembangan Teknologi Akustik di Indonesia
            Teknologi akustik mengalami perkembangan pesat di indonesia salah satunya adalah penggunaan teknologi dalam bidang:
ü  Bidang Komunikasi. 
Pada zaman dahulu alat-alat komunikasi masih belum berkembang. Orang dahulu menggunakan alat yang sederhana sebagai alat komunikasi salah satu contohnya adalah menggunakan kentongan bambu untuk memanggil masyarakat agar berkumpul dalam suatu tempat atau dengan menggunakan metode surat menyurat untuk mengetahui kabar. Pada zaman pengaruh budaya islam bedug digunakan sebagai alat komunikasi dan petunjuk waktu. Sedangkan orang-orang yunani mengembangkan telegraf optik dengan menggunakan api obor diatas benteng. Huruf-huruf dikirim dengan mengkombinasikan beberapa api obor tersebut. Dalam perkembangan berikutnya, radio ditemukan oleh clark maxwell pada 1816 edwin H. Armstron (1930) menemukan radio transistor. Radio transistor kemudian berkembang keseluruh dunia termasuk di Indonesia. Pada 1940-an berdirilah stasiun pemancar RRI Jakarta dan sejak saat itu, berita dapat disebarluaskan melalui siaran radio RRI. Selanjutnya ditemukan pula telepon, televisi  dan sistem Komunikasi Satelit Domestik (SKSD). Penemuan teknologi alat komunikasi menyebabkan perhubungan antar manusia, antar daerah dan antar negara menjadi cepat dan mudah dilakukan. Dan sekarang hampir disetiap keluarga di Indonesia dapat menggunakan teknologi akustik tersebut dengan mudah mulai dari televisi, radio dan telepon.
ü  Bidang Navigasi, 
    Pada bidang navigasi ini salah satu teknologi yang sangat pesat perkembanganya adalah penggunaan Drone. Drone satau sering disebut dengan pesawat UAV atau Unmanned Aerial Vehicle merupakan pesawat tanpa awak yang menjadi salah satu teknologi perkembangan pesat di dunia terutama di Indonesia. Tidak hanya dimanfaatkan dalam dunia militer, drone juga dapat digunakan dalam berbagai bidang kehidupan, seperti kesehatan, pengiriman barang dan bahkan berselfie. Drone dilengkapi dengan keadaan yang berbeda dari teknologi seni seperti infra-merah kamera (UAV militer), GPS dan laser (UAV militer). Cara kerja drone yaitu memanfaatkan kendali jarak jauh atau sistem remote dimana pilote memegang kontrol dari darat. Selain itu, drone dapat di control menggunakan smartphone karena drone memiliki chip komputer serupa arduino namun lebih kompleks. Chip ini membuat drone dapat mengolah gambar dari kamera yang terpasang padanya kemudian mengirimkan hasilnya ke smartphone yang digunakan sebagai control.



Minggu, 15 Januari 2017

PERCEMARAN LAUT : PENGARUH TERHADAP LINGKUNGAN LAUT

UNIVERSITAS LAMBUNG MANGKURAT
ILMU KELAUTAN BANJARBARU
PERCEMARAN LAUT :
PENGARUH TERHADAP LINGKUNGAN LAUT
Oleh
M.MISBACHUL MUNIR
G1F114201



PENDAHULUAN

             Pencemaran laut adalah suatu perubahan keadaan di suatu tempat penampungan laut seperti danau, sungai, lautan dan laut tanah akibat aktivitas manusia. Walaupun fenomena alam seperti gunung berapi, badai, gempa bumi juga mengakibatkan perubahan yang besar terhadap kualitas laut, hal ini tidak dianggap sebagai pencemaran. Pencemaran laut dapat disebabkan oleh berbagai hal dan memiliki karakteristik yang berbeda-beda. Meningkatnya kandungan nutrien dapat mengarah pada eutrofikasi.
             Sampah organik seperti laut comberan (sewage) menyebabkan peningkatan kebutuhan oksigen pada laut yang menerimanya yang mengarah pada berkurangnya oksigen yang dapat berdampak parah terhadap seluruh ekosistem. Industri membuang berbagai macam polutan ke dalam laut limbahnya seperti logam berat, toksin organik, minyak, nutrien dan padatan.Laut limbah tersebut memiliki efek termal, terutama yang dikeluarkan oleh pembangkit listrik, yang dapat juga mengurangi oksigen dalam laut.
Penanganan kondisi lingkungan yang tercemari minyak bumi dapat dilakukan secara fisika, kimia, dan biologi. Penanganan secara fisika biasanya dilakukan pada langkah awal yaitu dengan mengisolasi secara cepat sebelum tumpahan minyak menyebar kemana-mana. Metode fisika yang dapat digunakan ialah dengan mengambil kembali minyak bumi yang tumpah dengan oil skimmer. Penanganan secara kimia lebih mudah dilaksanakan yaitu tinggal mencari bahan kimia dan konsentrasi yang sesuai untuk mendegradasi kandungan minyak bumi. Misalnya surfaktan sintetis seperti alkil-benzene sulfonat (ABS) dan turunannya dapat digunakan sebagai bahan baku diterjen dan mengatasi pencemaran minyak di daratan maupun dipermukaan laut

A.      Pencemaran Laut
Pencemaran laut di Indonesia kebanyakan berasal dari limbah plastik yang berasal dari sampah-sampah rumah tangga di perkotaan. Sampah ini terbawa oleh arus sungai, kemudian ke laut. Banyak biota laut yang mengkonsumsi plastik sehingga mati. Senyawa kimia di dalam plastik yang dikonsumsi oleh ikan, dapat mengendap di dalam tubuh ikan, sehingga jika ikan ini kemudian dimakan oleh manusia dapat berdampak terhadap kesehatan manusia itu sendiri. Selain itu, pencemaran laut di Indonesia dapat pula disebabkan oleh kegiatan perminyakan, seperti bocornya pipa minyak atau kilang minyak. Kebocoran pipa minyak akan memberikan masalah serius bagi manusia dan ekosistem laut. Misalnya saja pencemaran laut dan pantai akibat bocornya pipa minyak di Cilacap pada bulan Mei 2005. Akibat pencemaran tersebut, nelayan kehilangan pendapatan karena ikan-ikan mati. Nelayan meminta kompensasi.
Pencemaran laut di artikan sebagai adanya kotoran atau hasil buangan aktivitas makhluk hidup yang masuk ke daerah laut. Sumber dari pencemaran laut ini antara lain adalah tumpahan minyak, sisa damparan amunisi perang, buangan proses di kapal, buangan industri ke laut, proses pengeboran minyak di laut, buangan sampah dari transportasi darat melalui sungai, emisi transportasi laut dan buangan pestisida dari perlautan. Namun sumber utama pencemaran laut adalah berasal dari tumpahan minyak baik dari proses di kapal, pengeboran lepas pantai maupun akibat kecelakaan kapal. Polusi dari tumpahan minyak di laut merupakan sumber pencemaran laut yang selalu menjdi fokus perhatian dari masyarakat luas, karena akibatnya akan sangat cepat dirasakan oleh masyarakat sekitar pantai dan sangat signifikan merusak makhluk hidup di sekitar pantai tersebut (Hartanto , 2008)
Minyak menjadi pencemar laut nomor satu di dunia. Sebagian diakibatkan aktivitas pengeboran minyak dan industri. Separuh lebih disebabkan pelayaran serta kecelakaan kapal tanker.Wilayah Indonesia sebagai jalur kapal internasional pun rawan pencemaran limbah minyak. Badan Dunia Group of Expert on Scientific Aspects of Marine Pollution (GESAMP) mencatat sekitar 6,44 juta ton per tahun kandungan hidrokarbon dari minyak telah mencemari perlautan laut dunia. Masing-masing berasal dari transportasi laut sebesar 4,63 juta ton, instalasi pengeboran lepas pantai 0,18 juta ton, dan sumber lain (industri dan pemukiman) sebesar 1,38 juta ton.Limbah minyak sangat berpengaruh terhadap kerusakan ekosistem laut, mulai dari terumbu karang, mangrove sampai dengan biota laut, baik yang bersifat lethal (mematikan) maupun sublethal (menghambat pertumbuhan, reproduksi dan proses fisiologis lainnya). Hal ini karena adanya senyawa hidrokarbon yang terkandung dalam minyak bumi, yang memiliki komponen senyawa kompleks, seperti Benzena, Toluena, Ethilbenzena dan isomer Xylena (BTEX)Senyawa tersebut berpengaruh besar terhadap pencemaran.
Menurut Soegiarto (1978), pencemaran laut adalah perubahan laut yang tidak menguntungkan (merugikan) yang diakibatkan oleh benda-benda asing sebagai akibat perbuatan manusia berupa sisa-sisa industri, sampah kota, minyak bumi, sisa-sisa biosida, laut panas dan sebagainya. Terdapat banyak tipe pencemaran yang sangat penting sehubungan dengan lingkungan kelautan, beberapa diantaranya adalah:
a)      Perubahan kuala, teluk, telaga, pantai serta habitat-habitat pantai karena
b)      pencemaran darat, pengerukan, pengurugan, dan pembangunan.
c)      Penyebaran pestisida dan bahan-bahan kimia lain yang tahan lama
d)     Penularan-penularan bahan-bahan radioaktif di seluruh dunia
e)      Pencemaran oleh pana
f)       Operasi Kapal Tanker
g)      Docking (Perbaikan/Perawatan Kapal)
h)      Terminal Bongkar Muat Tengah Laut
i)        Tanki Ballast dan Tanki Bahan Bakar
j)        Scrapping Kapal (pemotongan badan kapal untuk menjadi besi tua)
k)      Kecelakaan Tanker (kebocoran lambung, kandas, ledakan, kebakaran dan tabrakan)
l)        Sumber di Darat (minyak pelumas bekas, atau cairan yang mengandung hydrocarbon ( perkantoran & industri )
Pencemaran minyak semakin banyak terjadi sejalan dengan semakin meningkatnya permintaan minyak untuk dunia industri yang harus diangkut dari sumbernya yang cukup jauh, meningkatnya jumlah anjungan–anjungan pengeboran minyak lepas pantai. dan juga karena semakin meningkatnya transportasi laut.
Sedangkan Konvensi Hukum Laut III  mengartikan bahwa pencemaran laut adalah perubahan dalam lingkungan laut termasuk muara sungai (estuaries) yang menimbulkan akibat yang buruk sehingga dapat merusak sumber daya hayati laut (marine living resources), bahaya terhadap kesehatan manusia, gangguan terhadap kegiatan di laut termasuk perikanan dan penggunaan laut secara wajar, menurunkan kualitas air laut dan mutu kegunaan serta manfaatnya. Berdasarkan PP No.19/1999, pencemaran laut diartikan sebagai masuknya/ di masukkannya makhluk hidup, zat, energi, dan/atau komponen lain ke dalam lingkungan laut oleh kegiatan manusia sehingga kualitasnya turun sampai ke tingkat tertentu yang menyebabkan lingkungan laut tidak sesuai lagi dengan baku mutu dan/atau fungsinya.

B.            Pengaruh terhadap lingkungan laut.
Beberapa efek tumpahan minyak di laut dapat di lihat dengan jelas seperti pada pantai menjadi tidak indah lagi untuk dipandang, kematian burung laut, ikan, dan kerang-kerangan, atau meskipun beberapa dari organisme tersebut selamat akan tetapi menjadi berbahaya untuk dimakan. Efek periode panjang (sublethal) misalnya perubahan karakteristik populasi spesies laut atau struktur ekologi komunitas laut, hal ini tentu dapat berpengaruh terhadap masyarakat pesisir yang lebih banyak menggantungkan hidupnya di sector perikanan dan budi daya, sehingga tumpahan minyak akan berdampak buruk terhadap upaya perbaikan kesejahteraan nelayan.
Pada gambar di bawah sdh terlihat jelas bawahwa pencemaran minyak sampah–sampah yang meakibatkan pencemaran laut di Indonesia karena aktifitas manusia sengaja maupun tidak sengaja.
     Sampah-Sampah
            Tumpahan Minyak          
                              
Polusi dari tumpahan minyak di laut merupakan sumber pencemaran laut yang selalu menjadi fokus perhatian masyarakat luas, karena akibatnya sangat cepat dirasakan oleh masyarakat sekitar pantai dan sangat signifikan merusak makhluk hidup di sekitar pantai tersebut, dan akan merusak biota-biota yang ada di laur akibat tumpahan minya dan sampah. Lagi pula Indinesia 95%  penghasilan dari laut.
Sebetulnya cemaran minyak yang ada di perairan itu dapat disebabkan oleh beberapa hal antara lain : kecelakaan dan tumpahan selama proses produksi, transportasi dan penggunaan, presipitasi dari atmosfer, limbah domestik dan industri serta karena rembesan alamiah dari dasar laut (Saparinto, 2002). Pencemaran minyak di laut juga merusak ekosistem mangrove. Minyak tersebut berpengaruh terhadap sistem perakaran mangrove yang berfungsi dalam pertukaran CO2 dan O2, dimana akar tersebut akan tertutup minyak sehingga kadar oksigen dalam akar berkurang. Jika minyak mengendap dalam waktu yang cukup lama akan menyebabkan pembusukan pada akar mangrove yang mengakibatkan kematian pada tumbuhan mangrove tersebut. Tumpahan minyak juga akan menyebabkan kematian fauna- fauna yang hidup berasosiasi dengan hutan mangrove seperti moluska, kepiting, ikan, udang, dan biota lainnya.
Disamping itu dengan minyak yang menempel pada bulu burung, maka burung akan kehilangan kemampuan untuk mengisolasi temperatur sekitar (kehilangan sekat), sehingga menyebabkan hilangnya panas tubuh burung, yang jika terjadi secara terus menerus akan menyebabkan burung tersebut kehilangan nafsu makan dan penggunaan cadangan makanan dalam tubuhnya. Peristiwa yang sangat besar akibatnya terhadap kehidupan burung laut adalah peristiwa pecahnya kapal tangki Torrey Canyon yang mengakibatkan matinya burung–burung laut.

Jumat, 30 September 2016

Konsep Dasar Akustik Kelautan




Akustik Kelautan
Akustik merupakan teori yang membahas tentang gelombang suara dan perambatannya dalam suatu medium. Sedangkann akustik kelautan adalah teori yang membahas tentang gelombang suara dan perambantannya dalam suatu medium air laut. Akustik kelautan merupakan satu bidang kelautan yang umendeteksi  target di kolom perairan dan dasar perairan dengan menggunakan suara sebagai mediannya. Studi kelautan dengan menggunakan akustik sangat m embantu peneliti untuk mengetahui objek yang berada di kolom dan dasar perairan. Objek ini dapat berupa plankton, ikan, jenis subtrat maupun kandungan minyak yang berada di bawah dasar perairan. Didunia ini teknologi sudah berkembang dengan pesat, terutama dalam bidang kelautan. Teknologi dalam bidang kelautan dapat digunakan untuk memudahkan manusia dalam mengeksplorasi sumber daya kelautan selain itu dengan adanya teknologi dapat menentukan keselamatan dan kewaspadaan terhadap kondisi perairan laut yang bisa ditentukan secara pasti. Penggunaan teknologi juga membantu para peneliti untuk menentukan parameter, dan objek dengan lebih tepat.

Tentang Hidroakustik
Hidroakustik dapat digunakan untuk mendeteksi kedalaman perairan (batimetri), keberadaan, distribusi, ukuran ataupun tingkah laku dari hewan dan tumbuhan bawah air.  Hidroakustik meliputi akustik pasif ( mendengarkan gelombang suara yang datang) dan aktif akustik yang dapat membuat dan menerima gelombang suara, sering juga disebutechosounder.  Hidroakustik merupakan suatu cabang ilmu yang paling baik dalam penelitian (studi) perikanan.  Pada dasarnya pemantauan hidroakustik didasarkan pada prinsip yang sederhana. Gelombang suara akustik dipancarkan melalui sebuah alat yang menghasilkan energi akustik (suara) pada kolom perairan. Energi dari pulsa suara yang dipancarkan melalui medium air akan mencapai kecepatan 1500 m/s.  Ketika energi tersebut mengenai suatu objek, seperti ikan ataupun dasar perairan, beberapa energi akan memantul kembali ke transduser (alat pemancar dan penerima gelombang suara).  Nilai hamburan balik yang diterima oleh alat dan kemudian akan dikirimkan ke perangkat  output(seperti grafik perekam video atau layar) dan digital echo processor.  Dengan menentukan selang waktu antara pulsa yang dipancarkan dan yang diterima, transducer dapat memperkirakan jarak dan orientasi dari suatu objek yang dideteksi. (Jarak = kecepatan suara x waktu /2).
  • Akustik pasif
Akustik pasif merupakan suatu aksi mendengarkan gelombang suara yang datang dari berbagai objek pada kolom perairan, biasanya suara yang diterima pada frekuensi tertentu ataupun frekuensi yang spesifik untuk berbagai analisis.  Pasif akustik dapat digunakan untuk mendengarkan ledakan bawah air (seismic), gempa bumi, letusan gunung berapi, suara yang dihasilkan oleh ikan dan hewan lainnya, aktivitas kapal-kapal ataupun sebagai peralatan untuk mendeteksi kondisi di bawah air (hidroakustik untuk mendeteksi ikan).
·         Akustik aktif
Akustik aktif memiliki arti yaitu dapat mengukur j arak dari objek yang dideteksi dan ukuran relatifnya dengan menghasilkan pulsa suara dan mengukur waktu tempuh dari pulsa tersebut sejak dipancarkan sampai diterima kembali oleh alat serta dihitung berapa amplitudo yang kembali.  Akustik aktif memakai prinsip dasar SONAR untuk pengukuran bawah air. Akustik aktif seperti split-beam system dapat mendeteksi organisme yang berukuran kecil (contoh:krill), dengan tanpa batasan ukuran. Posisi dari ikan dapat dideteksi secara akurat dengan menggunakan split beam system, dapat juga digunakan untuk menghitung target strength, kecepatan jelajah serta arah pergerakan dari  suatu objek.  Dengan perkembangan zaman yang begitu pesat, ilmu akustik juga berkembang sejalan dengan kebutuhan manusia.  Arah penelitian dari akustik aktif termasuk penemuan multibeam, multi-frekuensi, dan “high frequency imaging system”.

Di dalam bidang akustik kelautan, terdpat beberapa pengertian yang harus dipahami. Berikut merupakan beberapa pengertian yang saya pelajari:


1. Target Strength
Urick (1983) mengemukakan bahwa target strength adalah echo yang kembali dari target di bawah air. Target strength didefinisikan dengan 10 kali logaritma berbasis 10 dari rasio intensitas suara target pada jarak 1 yard (dikonversi menjadi 1 m) yang kembali dari pusat akustik dalam beberapa arah dengan intensitas dari sumber. Target strength dirumuskan sebagai berikut: Target Strenght :
Urick (1983) juga menyebutkan target strength dengan istilah scattering strength. Scattering strength didefinisikan sebagai logaritma basis 10 dari rasio antara intensitas suara yang terukur pada 1 yd3 di dalam laut atau yd2 dari permukaan dengan intensitas suara pusat. Scattering strength dirumuskan sebagai berikut:


Urick menyampaikan bahwa nilai target strength setiap target yang berada di bawah permukaan air berbeda beda. Hal ini disebabkan oleh pengembalian echo yang berbeda beda dari setiap target.
Menurut MacLennan dan Simmonds (1992) target strength merupakan backscattering cross section dari target yang mengembalikan sinyal, sedangkan menurut Burczynski (1979), target strength mempunyai hubungan erat dengan backscattering cross section. Untuk  menghitung nilai Target strength pada transduser berfrekuensi 38 kHz digunakan formula menurut Foote (1987) dalam MacLennan dan Edmmons (1992). Sedangkan untuk perhitungan densitas ikan yang berasal dari ikan atau kelompok ikan, dilakukan dengan mengintegrasi echo yang terdeteksi dalam arah vertikal pada setiap lapisan. MacLennan dan Simmonds (1992) merumuskan target strength sebagai berikut:
TS=10 LOG(sbs)=10 log(ssp/4p)
Nilai Target strength berhubungan erat dengan ukuran ikan, bentuk ikan, orientasi ikan terhadap tranduser, gelembung renang, spesies ikan, kecepatan renang ikan, acoustic impedance dan beam pattern (MacLennan and Simmonds, 1992).

·         Threshold
Threshold adalah nilai ambang batas pemilihan tingkat sinyal dibawah sinyal yang tidak dapat diproses.sinyal threshold digunakan untuk menghilangkan sinyal noise dan sinyal yang tidak dikehendaki. Jadi semua echo dari ikan yang berada di bawah nilai threshold akan diabaikan. Hal ini berarti jika distribusi target strength berada di bawah nilai threshold maka intensitas echo rata-rata akan menjadi bias (Mac Lennan dan Simmond, 1992).

·         Echo integration
Echo integration merupakan suatu metode untuk menentukan densitas gerombolan ikan pada kolom perairan. Metode ini digunakan jika echocounting memberikan estimasi yang terlalu tinggi terhadap densitas ikan. Metode ini dicetuskan pertama kali oleh Dragesund and Olsen pada tahun 1965. Metode ini memberikan kemudahan dalam mengestimasi jumlah ikan. Echo integration menjadi teknik yang secara umum digunakan untuk menduga kelimpahan ikan. Teknik ini memberikan hasil yang cepat dan informasi terkini mengenai distribusi ikan pelagis di suatu area survei. Teknik ini diaplikasikan secara luas karena tidak perlu menentukan echo ikan tunggal.


Kecepatan Suara
Kecepatan suara adalah istilah yang digunakan untuk menyebut kecepatan gelombang suara yang melalui medium elastis. Kecepatan ini dapat berbeda tergantung medium yang dilewati (misalnya suara lebih cepat melalui air daripada udara), sifat-sifat medium tersebut, dan suhu. Namun, istilah ini lebih banyak dipakai untuk kecepatan suara di udara. Pada ketinggian air laut, dengan suhu 21 °C dan kondisi atmosfer normal, kecepatan suara adalah 344 m/detik (1238 km/jam). Kecepatan suara akan lebih cepat melaju di air dan di benda padat. Kecepatan suara di air adalah 4.3 kali lipat kecepatan di udara, yaitu 1.484 m/detik. Kecepatan suara di besi adalah 15 kali lipat kecepatan di udara, yaitu 5.120 m/detik.

Gambar. Pengaruh Oseanografi Terhadap Kecepatan Suara

Aplikasi Akustik Dibidang Kelautan
Seperti kita ketahui bahwa alat akustik merupakan salah satu alat yang  dapat mendeteksi kedalaman dan keberadaan suatu benda  yang ada di bawah permukaan laut salah satunya adalah ikan dan biota-biota lainnya. Alat ini merupakan peralatan pendukung untuk para nelayan yang menangkap ikan di lautan. Teknologi ini merupakan metode yang sangat efektif  dan  bermamfaat bagi eksplorasi di bidang kelautan dan perikanan. Metode ini dikenal dengan Hidroakustik yang terdiri dari pengukuran, analisis, dan interpretasi dari signal yang dipantulkan oleh objek atau scattering dari target yang dikenai gelombang akustik dari tranduser atau alat hidroakustik, objek tersebut  berupa ikan, plankton, dan substrat dasar perairan. Secara garis besar pengunaan akustik bawah air dalam kelautan dan perikanan dapat dikelompokkan menjadi 5 yakni:
1.Untuk survey
2.Budidaya perairan
3.Penelitian tingkah laku ikan 
4.Mempelajari penampilan
5.Selektifitas alat-alat penangkapan ikan
Dalam survey kelautan dapat digunakan untuk mengetahui spesies ikan, mengetahui ukuran individu ikan, kelimpahan/stok sumberdaya hayati laut (plankton dan ikan). Aplikasi dalam budidaya perairan dapat digunakan dalam penentuan/pendugaan jumlah biomassa dari ikan dalam jaring atau kurungan pembesaran (penned fish/enclosure), untuk menduga ukuran individu ikan dalam jaring dan untuk memantau tingkah laku ikan (dengan telemetering tags), khususnya aktifitas makan (feeding activity).
Akustik kelautan berkaitan dengan berbagai materi, diantaranya:
1. Echosounder
Echosounder merupakan salah satu alat yang penting untuk mengetahui kedalaman laut. Kedalaman dasar laut dapat dihitung dari perbedaan waktu antara pengiriman dan penerimaan pulsa suara. Dengan pertimbangan sistim Side-Scan Sonar pada saat ini, pengukuran kedalaman dasar laut (bathymetry) dapat dilaksanakan bersama-sama dengan pemetaan dasar laut (Sea Bed Mapping) dan pengidentifikasian jenis-jenis lapisan sedimen dibawah dasar laut (subbottom profilers

 2. Fish Finder
Fish Finder bekerja berdasarkan pemantulkan gelombang suara yang dipancarkan dari permukaan perairan sampai dasar lautan. Ketika bunyi yang dipancarkan kedasar lautan tersebut membentur suatu benda dan kembali ke penerima sonar, maka jaraknya yang ditempuh oleh bunyi tersebut dapat diukur, maka dapat diketahui letak benda tersebut dibawah permukaan laut.
3. Acoustic Doppler Current Profiler (ADCP)
       Prinsip kerja ADCP berdasarkan perkiraan kecepatan baik secara horizontal maupun vertikal menggunakan efek Doppler untuk menghitung kecepatan radial relatif, antara instrumen (alat) dan hamburan di laut. Tiga beam akustik yang berbeda arah adalah syarat minimal untuk menghitung tiga komponen kecepatan. Beam ke empat menambah pemborosan energi dan perhitungan yang error. ADCP mentransmisikan ping, dari tiap elemen transducer secara kasar sekali tiap detik. Echo yang tiba kembali ke instrumen tersebut melebihi dari periode tambahan, dengan echo dari perairan dangkal tiba lebih dulu daripada echo yang berasal dari kisaran yang lebih lebar. Profil dasar laut dihasilkan dari kisaran yang didapat. Pada akhirnya, kecepatan relatif, dan parameter lainnya dikumpulkan diatas kapal menggunakan Data Acquisition System (DAS) yang juga seca
 
4.Prinsip Kerja:
Perhitungan navigasi, menggunakan kalibrasi yang dilakukan sekali secara lengkap.Arus absolut yang melampaui kedalaman atau kedalaman referensi didapatkan dari rata-rata kecepatan relatif kapal. Arus absolut pada setiap kedalaman dapat dibedakan dari data terakhir dari kapal navigasi dan perhitungan relatif ADCP.
Prinsip Perhitungan Gelombang Oleh ADCP.           
Prinsip dasar perhitungan dari perhitungan arus/gelombang yaitu kecepatan orbit gelombang yang berada dibawah permukaan dapt diukur dari keakuratan ADCP. ADCP  mempunyai dasar yang menjulang,dan mempunyai sensor tekanan untuk mengukur pasang surut dan rata-rata kedalaman laut. Time series dari kecepatan, terakumulasi dan dari time series ini, kecepatan spektral dapat dihitung. Untuk  mendapatkan ketinggian diatas permukaan, kecepatan spektrum dierjemahkan oleh pergeseran permukaan menggunakan kinematika linear gelombang.  Kegunaan ADCP pada berbagai aplikasi :
1.         Perlindungan pesisir dan teknik pantai.
2.         Perancangan pelabuhan dan operasional
3.         Monitoring Lingkungan
4.         Keamanan Perkapalan
ADCP  dapat menghitung secara lengkap, arah frekuensi gelombang spektrum, dan dapat dioperasikan di daerah dangkal dan perairan dalam. Salah satu keuntungan ADCP adalah, tidak seperti directional wave buoy, ADCP dapat dioperasikan dengan resiko yang kecil atau kerusakan. Sebagai tambahan untuk frekuensi gelombang spektal, ADCP juga dapat digunakan untuk menghitung profil kecepatan dan juga level air.
Keuntungan ADCP:
1.       Definisi yang tinggi dari arah arus/gelombang pecah.
2.       Logistik yang sederhana dengan bagian bawah yang menjulang
3.       Kerusakan yang kecil, dan resiko yang kecil.
4.       Kualitas perhitungan permukaan yang tinggi yang berasal dari dasar laut.
ADP/ADCP keistimewaannya meliputi
  • Dapat bekerja di kapal dengan penentuan posisi yang lengkap termasuk bottom-tracking dan permukaan laut untuk transek dengan menggunakan GPS.
  • ADCP memberikan sistem real-time untuk pesisir pantai, dan monitoring pelabuhan.
  • ADCP mudah digunakan untuk mengukur arus
  • Mempunyai system otomatik yang dilengkapi dengan baterai dan perekam untuk buoy lepas pantai atau bottom-mounting.